STED-Mikroskop

Vergleich von Standard-Konfokalmikroskopie und STED-Mikroskopie bei der Abbildung von Proteinen des Kernporenkomplexes.

Ein STED-Mikroskop (STED = Stimulated Emission Depletion) ist eine besondere Form des Lichtmikroskops, dessen Auflösung nicht beugungsbegrenzt ist. Es kann daher noch Strukturen unterscheiden, die deutlich enger beieinander liegen, als es das von Ernst Abbe formulierte Limit der normalen lichtmikroskopischen Auflösungsgrenze angibt. STED ist eine von mehreren Techniken, die eine solche erhöhte Auflösung erlauben (siehe RESOLFT-Mikroskopie).

Wie alle derartigen Verfahren ist auch STED eine Spielart der Fluoreszenzmikroskopie, es setzt also die Verwendung von Fluoreszenz-Farbstoffen voraus. Diese sogenannten Fluorochrome lassen sich durch Licht bestimmter Wellenlängen anregen und strahlen anschließend spontan, innerhalb einiger Nanosekunden, Licht über einen Bereich längerer, energieärmerer Wellenlängen wieder ab. Die spontane Abstrahlung lässt sich aber unterdrücken, wenn intensives Licht einer dieser energieärmeren Wellenlängen zusätzlich eingestrahlt wird: Dann wird die Energie des angeregten Fluorochroms künstlich abgeregt, es kommt zur stimulierten Emission. Von dieser Abregung (engl. Depletion) mittels stimulierter Emission kommt auch die Bezeichnung des Verfahrens.

Bei der STED-Mikroskopie wird ein Laserstrahl für die Anregung der Fluorochrome in das Präparat fokussiert. Gleichzeitig wird in die Außenbereiche des Fokus ein Ring aus Abregungslicht gelegt, sodass spontanes Fluoreszenzlicht nur aus einem zentralen Bereich abgestrahlt wird, der kleiner ist als der beugungsbegrenzte Anregungsfokus. Der STED-Effekt ist zunächst auf eine Stelle im Präparat begrenzt. Diese Stelle wird daher wie bei anderen Laser-Scanning-Mikroskopen über das Präparat gerastert, um zwei- oder dreidimensionale Bilder zu erzeugen.

STED wurde 1986 von Victor Okhonin in einem sowjetischen Patent zum ersten Mal theoretisch beschrieben.[1] 1994 wurde die Idee von Stefan Hell und Jan Wichmann publiziert[2] und 1999 von Stefan Hell und Thomas Klar experimentell realisiert[3]. Das STED-Mikroskop und die Gruppe um Stefan Hell wurden für ihre Ergebnisse im Jahr 2006 mit dem Deutschen Zukunftspreis ausgezeichnet. Im Oktober 2014 wurde Stefan Hell für die Arbeiten am STED mit dem Nobelpreis für Chemie[4][5][6][7] ausgezeichnet. Es wird unter anderem in der Arbeitsgruppe von Stefan Hell am Max-Planck-Institut für biophysikalische Chemie in Göttingen weiterentwickelt. STED-Mikroskope sind auch kommerziell erhältlich.[8]

  1. Patent SU1374922A1: Способ исследования микроструктуры образца. Angemeldet am 10. April 1986, veröffentlicht am 30. Juli 1991, Anmelder: Институт Биофизики CO АН СССР, Erfinder: В. А. Охонин.
  2. Stefan W. Hell and Jan Wichmann: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. In: Optics Letters. Band 19, Nr. 11, 1994, S. 780–782, doi:10.1364/OL.19.000780.
  3. Thomas A. Klar, Stefan W. Hell: Subdiffraction resolution in far-field fluorescence microscopy. In: Optics Letters. Vol. 24, Nr. 14, 1999, S. 954–956, doi:10.1364/OL.24.000954.
  4. The Nobel Prize in Chemistry 2014. In: NobelPrize.org. Nobel Media AB, 2014, abgerufen am 13. Oktober 2020 (englisch).
  5. Holger Dambeck: Messerscharfer Blick ins Innerste des Lebens. Chemie-Nobelpreis 2014. In: Spiegel Online. Rudolf Augstein, 9. Oktober 2012, abgerufen am 9. Oktober 2012.
  6. Norbert Lossau: Nobelpreis für die Entwickler des Supermikroskops. In: Welt. Stefan Aust, 8. Oktober 2014, abgerufen am 9. Oktober 2014.
  7. Chemie-Nobelpreis 2014 geht an Max-Planck-Forscher Stefan Hell. Max-Planck-Institut für biophysikalische Chemie, 8. Oktober 2014, abgerufen am 9. Oktober 2014.
  8. Geräte von PicoQuant siehe MicroTime 200 STED, Geräte von Abberior Instruments siehe FACILITY, STEDYCON & INFINITY, Geräte von Leica Microsystems siehe TCS STED.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne